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INTRODUCTION 

The propagation of elastic-plastic waves in long rods has been treated 

extensively in the literature (refs 1-3) since the pioneering works of Donell, 

Karman, Taylor, and Rakhmatulin.  The study of plastic wave propagation is 

important because it attempts to explain the response of materials to intense 

dynamic loading and serves also as a basis for determining dynamic material 

properties. 

Analytical solutions can be obtained for only a few idealized situations; 

hence, many impact studies have been performed using numerical methods.  Many 

computer codes using either finite-element or finite-difference approaches 

have been developed.  The computer simulation of impact phenomena in solids is 

still quite involved and it depends critically on the impact velocity.  For 

high velocity impact and penetration problems, a good review was given by 

Zukas et al (ref 3).  For low velocity contact-impact problems, many 

structural response codes were reviewed by Noor (ref 4). 

A numerical study of the dynamic response of an elastic-plastic 

projectile due to normal impact is reported here using the finite element 

structural response code ADINA (ref 5).  The projectile is a finite length 

^Cristescu, N., Dynamic Plasticity, John Wiley & Sons, Inc., New York, 1967. 
-Nowac 
1978. 

2Nowacki, W. K., Stress Waves in Non-Elastic Solids, Pergamon Press, Oxford, 

JZukas, J. A., Nicholas, T., Swift, H. F., Greszczak, L. B., and Curraa, D. 
R-, Impact Dynamics, John Wiley & Sons, Inc., New York, 1982. 

4Noor, A. K., "Survey of Computer Programs for Solution of Nonlinear 
Structural and Solid Mechanics Problems," Computer and Structures, Vol. 13, 
1981, pp. 425-465. 

5Bathe, K. J., "ADINA Users' Manual," Report AE-81-1, ADINA Engineering, Inc., 
Watertown, MA, 1981. 



cylindrical bar made of a high strength steel.  The bar is long and travels 

with velocity V = 75 m/s before it strikes a rigid target.  First, three 

direct integration schemes have been used for the uniaxial stress wave problem 

in a linear-hardening material, and the results are compared with an exact 

analytical solution in order to evaluate the accuracy and stability.  Then, 

additional numerical results for perfectly-plastic materials are discussed in 

order to show the effect of strain-hardening for a multi-linear material 

model.  Finally, some results based on two-dimensional elements are presented 

in order to show the lateral effect. 

ANALYTICAL SOLUTION 

The problem of the normal impact of a rod against a rigid target has been 

considered by many authors.  Various schemes have been used for different 

kinds of initial conditions and various material properties.  For a linear 

work-hardening material due to sudden impact, an analytical solution for the 

uniaxial stress wave problem is available (ref 1) and it is presented here for 

comparison with the corresponding ADINA results.  Thus, consider a bar of 

length L and diameter D that is moving with velocity V in the negative Z 

direction.  At time 0 the bar strikes a rigid wall Z = 0 (Figure la).  Guided 

by the stress-strain curve for a high strength steel supplied to us (ref 6), 

the following material data will be used: 

E = 208 GPa,    p = 0.783 g/cc,    v = 0.293 

ay = 1.3 GPa,   Ep = 4 GPa, 
CD 

1 Cristescu, N., Dynamic Plasticity, John Wiley & Sons, Inc., New York, 1967, 
6Wright T. W., Private Communication, 1982. 



where E, p, V, ay, and E- are Young's modulus, density, Poisson's ratio, yield 

stress, and plastic modulus, respectively.  The elastic and plastic one- 

dimensional wave speeds will then be ce = /E/p = 5134 m/s and Cp = /Ep/p = 

715 m/s, respectively.  The velocity Vy corresponding to the yield stress Oy 

of the material is 

Vy = ay/(pce) - ceey = 32.21 m/s (2) 

Both elastic and plastic waves will be generated if the impact velocity V > 

Vy.  Let us consider the case V = 75 m/s, L = 1.1 m, D =0.1 m.  After impact, 

two shock wave fronts delimit three distinct regions in the bar (Figures lb 

and 1c)•  The analytical solutions for the particle velocity, strain, and 

stress in these three regions are 

V0 = -v = -75 m/s,    e0 =0,    a0 = 0, 

Vi = -V + Vy = -42.79 m/s,    ei = -fiy = -0.625%,    a0 = -Oy = -1.3 GPa, 

V2 ■ 0.    e2 = -ey + (Vy-V)/cp = -6.610% 

02 = -Oy + Ep(e2
+ey) " -1-539 GPa . (3) 

After time t = L/ce = 213 ps, the elastic wave front is reflected from the 

free end.  Behind this front (Figure Id), 03 = £3 = 0, V3 = 2Vy - V.  At time 

tg = 2L/(ce+Cp) = 374.85 us,   the wave fronts of the plastic and of the elastic 

unloading waves meet at the section S.  The stress and velocity are continuous 

but the strain is discontinuous across this section S, a nonpropagable 

discontinuity surface.  Since the inequality 

2ce 
2VV < V < (1 +  ) Vv = 88.79 m/s (4) 

y ce+cp  
y 

is satisfied, the plastic wave stops at S and elastic waves again propagate 

from S in both directions (Figure le).  The analytical solutions in regions 4 



and 5 are 
1 ce 

V4 = V5 = - (3  )(Vy-V) + V = 13.79 m/s 
2 Cp 

1 
H " T (l+Cp/ce)(ey-V/ce) = -0.473% 

c       c 
£5 = - (2 -- + 1 - ~)(ey-V/ce) = -6.342% 

cp      ce 

04 = 05 = -0.983 GPa (5) 

Figures lb through le show the locations of the wave fronts at time t = 

100, 200, 300, 400 ps, respectively.  The analysis can be continued until the 

contact between the bar and the target ceases at tc = 4L/(ce+Cp) = 749.7 ps. 

More detailed information about the analytical solution can be found in the 

book by Cristescu (ref 1). 

ADINA SOLUTION 

The ADINA code, developed by K. J. Bathe, is a general purpose finite 

element program for Automatic Dynamic Incremental Nonlinear Analysis (ref 5). 

In nonlinear analysis the incremental finite element equations of motion used 

are, in implicit time integration, 

M t+Atu + c t+Atu + tK U = t+AtR - tp (6) 

and in explicit time integration, 

M tu + £ tu + tK u = tR _ t£ (7) 

where M, £, tjC, tR, t+AtR, ^F are constant mass matrix, constant damping 

matrix, tangent stiffness matrix at time t, external load vector applied at 

iCristescu, N., Dynamic Plasticity, John Wiley & Sons, Inc., New York, 1967. 
5Bathe, K. J., "ADINA Users' Manual," Report AE-81-1, ADINA Engineering, Inc., 
Watertown, MA, 1981. 



time t, t+At, nodal point force vector equivalent to the element stresses at 

time t, respectively, and _U is the vector of nodal point displacement 

increments from time t to time t+At, i.e., _U = t+AtU - t\]_.     The solution of 

Eq. (6) yields, in general, an approximate displacement increment U^.  To 

improve the solution accuracy and in some cases to prevent the development of 

numerical instabilities, it may be necessary to use equilibrium iteration in 

each or preselected time steps. 

In ADINA, the central difference method is employed for explicit time 

integration and either the Newmark method or Wilson method is employed for 

implicit time integration.  The integration schemes (ref 7) are given by: 

t0 =  (t+Atu _ 2tU + t-Atu) (8) 

(At)2 

1 
tu = (t+Atu _ t-Atu) /gN 

2 At 

for the central difference method, 

t+Atu = tu + [(l-6)to + 6t+Atu]At (10) 

I 
t+Atu = tu + tuAt + [(- - o)tU + at+Atu](At)2 (11) 

for the Newmark method, and 

x 
t+Atu = tu + ( )(t+eAtu - tu) (12) 

eAt K   ; 

9 > 1,  0 < x < 6At 

for the Wilson method. 

Bathe, K. J., Numerical Methods in Finite Element Analysis, Prentice-Hall, 
Inc., New Jersey, 1976. 



The Wilson and Newmark. methods are unconditionally stable if 6 > 1.37 or 

a >  1/4(1/2+6), 6 > 1/2.  In our numerical study, we have chosen 6 = 1.4, a  = 

1/4, 6 = 1/2.  In using the central difference method, the time step. At, has 

to satisfy the Courant condition 

2 
At  =   Atcr = KAJi/c     or - (13) 

0) 

where A£ is the minimum mesh size, 0) is the maximum natural frequency, c is 

the local sound speed, and K < 1. 

NUMERICAL COMPARISON 

Consider a bar with the following geometrical and material data:  L = 

1.1 m, D = 0.1 m, E = 208 GPa, p = 0.783 g/cc, ay = 1.3 GPa, Ep = 4 GPa, 

subjected to two values of impact velocity:  V = 25 m/s or 75 m/s.  Since the 

velocity corresponding to the yield stress Oy  of the material is Vy = 32.2 

m/s, the impact is elastic for the first case and elastic-plastic for the 

second case.  Analytical solutions are known for both cases.  We used 100 

one-dimensional truss elements to simulate this uniaxial stress wave problem. 

In order to satisfy the stability criterion for explicit integration by the 

central difference method, we have chosen the time step At = 2MS which is less 

than the critical time step 

Atcr - AZ/ce = 2.13 us 

Our study compares three integration schemes with the same time step. 

The computations are all stable, and the numerical results for the axial 

stress and velocity when V = 25 m/s are shown in Figures 2 through 5.  Figure 

2 shows results for the particle velocity and stress along the rod at t = 100, 

200, 300, 400, 500 us when the Wilson method was used.  Figure 3 shows the 



similar results for the Newmark method.  The numerical results based on these 

two methods are less accurate when compared with the results based on the 

central difference method.  Figure 4 shows a comparison of the results for the 

particle velocity along the length of the bar based on the central difference 

method, the Newmark method, and the analytical solution at t = 100, 200, 300, 

400 ys.  A similar comparison between the central difference method, and the 

analytic solution for the axial stress along the bar is shown in Figure 5.  It 

should be noted that the computations were performed under the assumption that 

the rod and target remain in contact after impact while the theoretical 

interval of contact is tc = 2L/ce = 426 ys. 

Calculations were also performed for elastic-plastic impact with V = 75 

m/s using the three integration schemes with the same mesh size and time step. 

A comparison of numerical results for the axial stress and velocity using the 

central difference and Newmark methods is shown in Figure 6 at t = 200 ys. 

The solid and dotted curves represent the results based on the central 

difference method and Newmark method, respectively.  Similar results are shown 

in Figure 7 at t = 400 ys.  As can be seen from these two figures, the central 

difference method gives more accurate results than the Newmark method.  The 

numerical results based on the Wilson method are compared with those based on 

the central difference method in Figure 8.  This also demonstrates that the 

numerical results based on the central difference method are more accurate. 

We may then conclude from this study on elastic as well as elastic-plastic 

impact that the central difference method will give more accurate results than 

the other two integration schemes. 



HARDENING AND LATERAL EFFECTS 

After reaching the above conclusion, we used the central difference 

method for the rest of this study.  In order to show hardening effects, we 

obtained numerical results for displacement, velocity, strain, and stress in a 

long rod of an elastic-perfectly-plastic material.  Figures 9 and 10 show the 

results of the particle velocity and stress for a linear work-hardening as 

well as a perfectly-plastic material at t = 300 and 400 us, respectively.  It 

can be seen from these comparsions that the effect of strain-hardening on the 

particle velocity and stress is quite significant even though the plastic 

modulus Ep = 4 GPa is small when compared with the elastic modulus E = 208 

GPa. 

In order to study lateral effects, we have used two-dimensional four-node 

quadrilateral ring elements to obtain numerical results.  We chose the same 

mesh size Ar = Az = 0.011 m and used 50 elements along the length of the bar 

with L/D =25.  In this arrangement, the new length of the bar is only half 

of the original.  We have used the same time step At = 2 ps as in the one- 

dimensional truss elements.  This time step yields stable computations for 

one-dimensional truss elements but not for two-dimensional quadrilateral ring 

elements.  This seems due to the lateral effect such as the Poisson's ratio. 

Including the effect of Poisson's ratio (v = 0.293), the speed of longitudinal 

elastic wave is cd = [(E/p)((l-v)/(l+v))/(l-2v)j
1/2 = 5923 m/s, which reduces 

to ce = (E/p)
1'2 = 5154 m/s in case of v = 0.  Guided by the stability 

criterion for linear elastic problems, we thus chose At < Atcr = AZ/c^ ■ 

0.011/5923 sec = 1.857 us.  For this reason, we carried out the computations 

for 250 time steps using At = 1 us.     The total number of time steps is the 



same for both the one and two-dimensional problems.  The length of the bar and 

time increment for the two-dimensional case are only half of the one- 

dimensional case.  For the two-dimensional case, we have carried out the 

computations for impact velocities of V = 25 m/s and 75 m/s.  The results for 

the elastic impact (V = 25 m/s) are not shown here.  For elastic-plastic 

impact (V = 75 m/s), we have carried out the computations for a bilinear as 

well as a multi-linear material model.  Seven points are used to represent the 

stress-strain curve, i.e., (a in GPa, e in %) = (1.3, 0.63), (1.355, 1.03), 

(1.38, 1.83), (1.394, 2.63), (1.415, 4.23), (1.43, 5.83), (1.45, 8.63). 

The numerical results for the case of a multi-linear material are shown 

in Figures 11 through 14.  Figure 11 shows the effective stress and axial 

velocity along the length of the bar at the end of 50 and 100 time steps. 

Curves 1 and 2 represent the results at t = 50 and 100 us, respectively. 

Figure 12 shows the axial stresses along the length of the bar.  We have 2x2 

stations to carry out the numerical integration in the spatial direction in 

each element.  The results for the stresses are calculated at four integration 

stations.  As can be expected from a long rod (L/D = 25), the differences in 

the results along the stations near the centerline or outside are very small. 

Figures 13 and 14 show the similar results for the effective stress, particle 

velocity, and axial stress along the length of the bar at t = 150 and 200 us. 

As can be seen in these two figures, the axial stress in the plastic zone 

shows bigger oscillations than corresponding effective stress.  Comparing the 

results shown in Figures 11 through 14 with the one-dimensional results shown 

in Figures 6 through 8, we conclude that the transition near the wave front is 

not as steep as the one-dimensional case and dispersion behind the wave front 



can be observed.  Some of the oscillations are real due to lateral effects 

such as radial inertia, radial shear, etc., but some are due to numerical 

errors such as truncation error in the finite element system, approximations 

in time integration schemes, numerical integration in the spatial directions, 

etc.  It is difficult to identify how many of the oscillations are real and 

how many are due to numerical error.  We hope to develop a numerical model to 

minimize the numerical error for this purpose while trying to improve the 

theoretical model. 

CONCLUSION 

Based on our numerical study of the uniaxial stress wave problem in a 

linear-hardening material, the central difference method gives more accurate 

results than the Wilson and Newmark methods.  The effect of hardening is 

significant and lateral effects due to radial motion need further study.  We 

plan to improve the theoretical model and to develop a numerical scheme.  We 

hope to compare our numerical results with experiments involving normal impact 

of cylindrical rods. 

10 
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Figure 11.  The effective stress and axial velocity based on 
elements at t = 50 and 100 \is. 
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Figure 13.  The effective stress and axial velocity based on 2-D 
elements at t = 150 and 200 ys. 
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Figure 14.  Axial stress (a2) based on 2-D elements at t = 150 and 200 \is. 
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